top of page

Elitneon

What if we had a type of resistor which could accommodate the changing voltage? There is such a device, and it is used by many skyltar led cluster manufacturers. The device is called a Linear Regulator, and it is a small step up in control technology from the primitive ballast resistor. A Linear Regulator is a low-cost control method which can be thought of as a variable resistor that varies the resistance according to the load in order to provide a constant output voltage to the LEDs. Because it is still a resistive device, it controls excess energy (above that required by the skyltar led ) by turning it into heat. But wait a minute, isn't HEAT the great enemy of skyltar led ? That's right! Of course, with proper design one could dissipate some of the heat, but overall, Linear Regulator can only work for small voltage variations, which is fine for some applications, but again, not suitable for the full of battery banks, solar panels and generators and inverters of our electrically hostile marine world.

Hopefully the above makes it very clear why ballast resistor bulbs and cheap bulbs have no place on a boat. From what you have read in the previous paragraphs, you are now considerably better informed than the average person looking for skyltar led lighting. Not only that, you are most probably better informed than most of the uninformed merchants out there selling LED bulbs to the unsuspecting boater.

So what else is available in state-of-the-art LED controls? It seems what we really need is a sort of closed-loop device that looks at the incoming voltage and maintains the constant current feeding the skyltar led even as the voltage fluctuates, all of that while keeping minimum heat. And, you guessed it, the device exists! It's called a DC/DC Buck Power Converter. It is an expensive way to supply energy to LEDs, but it has all the advantages that we are looking for.

The Buck Power Converter is a complex little device, but its function is somewhat simple. To describe it in layman's terms, it basically takes an energy source and switches it on and off. During the "on" state, the energy is stored in an inductor and during the "off" state, the inductor releases the energy to the skyltar led . The ratio of "on" and "off" time is called the duty-cycle. For example, a 25% duty-cycle would pass to the LED only 3V from a 12V source. All we need to do is control the duty-cycle according to the input voltage and we get constant current feeding our skyltar led . The Buck Power Converter controller does this by monitoring the current to the LEDs through a current-sense resistor and adjusts the duty cycle either up or down to correct the current in order to match the LED optimal current requirement. This way we can push the envelope on the brightness of the LEDs without worrying that the source voltage fluctuations will take us past the maximum rated current of the LED and end up with a fried skyltar led cluster.



 

bottom of page